为什么“薛定谔的猫”这个实验在现实中永远无法实现?

很简单,因为“薛定谔的猫”这个实验是套用宏观世界的认知来对对微观世界进行阐述,在宏观世界是无法复制的。

1924年,德布罗意首次正式提出了“波粒二象性”,他指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都具有波粒二象性。他把光子的动量与波长的关系式 p=h/λ 推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量 h 跟粒子动量 mv 的比,即 λ= h/(mv)。这个关系式后来就叫做德布罗意公式。而且根据这一假说,电子也会具有干涉和衍射等波动现象。

电子的发现者J.J汤姆逊的儿子P.G.汤姆逊也以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;为德布罗意波提供了又一坚实的基础。 他们两个人一起于1937年斩获诺奖。

量子力学的构建者哥本哈根学派认为,微观物质以波的叠加混沌态存在;一旦观测后,它们立刻选择成为粒子。

哥本哈根学派的领导者玻尔认为人类并不能获得实在世界的确定的结果,他称自己只有由这次测量推测下一次测量的各种结果的分布几率,而拒绝对事物在两次测量之间的行为做出具体描述。

而这恰恰也是爱因斯坦的相对论所无法接受的,相对论虽然推翻了牛顿的绝对时空观,却仍保留了严格的因果性和决定论。

作为爱因斯坦的盟友,薛定谔同样无法认可玻尔的观点,所以他提出了“薛定谔的猫”。

薛定谔提出在一个盒子里有一只猫,以及少量放射性物质。之后,有50%的概率放射性物质将会衰变并释放出毒气杀死这只猫,同时有50%的概率放射性物质不会衰变而猫将活下来。

根据经典物理学,在盒子里必将发生这两个结果之一,而外部观测者只有打开盒子才能知道里面的结果。

但是在量子的世界里,当盒子处于关闭状态,整个系统则一直保持不确定性的波态,即猫生死叠加。猫到底是死是活必须在盒子打开后才能够知道。

现实世界里,猫怎么可能处于既生又死的状态,薛定谔认为这非常好的反驳了玻尔,但是他忽略了一个问题,微观世界和现实世界是不一样的。

宏观世界的认知是无法适用于微观世界的,量子力学的一个中心原则就是粒子可以存在于叠加态中,能同时拥有两个相反的特性,也就是我们说的波粒二象性。

尽管我们在日常生活中常常面对“不是A就是B”的抉择,而但在微观世界中是可以接受“既是 A 又是 B”的。

后来经过多次的实验,都证明了量子叠加是正确的,也就是说在微观世界里,猫真的是处于“既生又死”的状态,粒子同时以两种状态存在的能力。

而正是基于量子叠加的特性,使得量子计算成为可能,量子计算也被称为是第四次工业革命的引擎 。

因为传统计算机每比特非0即1,而在量子计算机中,量子比特可以以处于既是0又是1的量子叠加态,这使得量子计算机具备传统计算机无法想象的超级算力。

举个例子,如果x=0,运行A;如果x=1,运行B。

传统计算机永远只会一次执行一种逻辑分支,要么A,要么B,要么两种情况各运行一次。

但在量子计算机中,变量X是量子叠加态,既为1,又为0,因此它可以在一次计算中同时执行A和B。这也被称为量子比特或者叫量子位。成为了量子信息的计量单位。

也就是说,传统计算机使用0和1,量子计算机也是使用0跟1,但与之不同的是,其0与1可同时计算。古典系统中,一个比特在同一时间,不是0,就是1,但量子比特是0和1的量子叠加。这是量子计算机计算的特性。

所以如果我们将量子比特的数量增加到10个,那么传统计算机需要计算2^10=1024次。量子计算机需要计算多少次呢?

还是1次。

我们再把量子比特数加到100个、1000个、10000个乃至更多,看出差距了吗?现有计算机要运行上万年的工作量,量子计算机只用几分钟就能搞定。

爱因斯坦那句著名的话;”上帝不玩骰子“,然而薛定谔的猫却成为最好的论证:上帝似乎是玩骰子的。

正是因为量子叠加的正确性,“薛定谔的猫”实验在宏观世界中永远不可能复制,因为宏观物质不可能处于“既生又死”的状态,微观世界和宏观世界拥有着不同的运行法则。