直线是半径无穷大的圆,这是真的吗?

直线是半径无穷大的圆,这一观点在射影几何学中是正确的。

当一个圆的半径无穷大,其周长也是无穷大,圆周上任意两点之间的弧无穷长,弧上任意一点的曲率都为0,就是说该圆弧无限接近于一条直线。而直线也无穷长,因此认为它们是等价的。同样,我们可以认为直线的曲率处处为0,它的曲率半径无穷大。

举个例子。我们的直觉告诉我们地面是平的,实际上当我们离地面足够远时,就会发现地面其实是弯曲的。如果地球的半径无穷大,不管你在哪个观察点,都只会发现地面是平的。

射影几何研究几何图形在射影变换下依然保持不变的图形性质。射影其实就是投影的意思,比如中心投影和平行投影,因此射影几何又被叫做投影几何。

所谓的射影变换就是利用中心投影或者平行投影将一个图形变换为另一个图形。在数学中大家最常见的有全等变换和相似变换,此外还有射影变换、仿射变换、拓扑变换等。

由于绘画和建筑学的需要,古希腊时期的学者就已经开始研究投影,并诞生了几何透视法。基于对中心投影的研究,在17世纪,射射影几何学正式建立,成为了几何学的一个分支。由于其研究范围狭窄,内容很有限。19世纪以后,随着群概念的引入,射影几何又充满了生机。

射影几何学中引入了无穷远点、无穷远直线、无穷远平面的概念。而射影几何学的奠基人是帕斯卡和笛沙格,画法几何创始人蒙日的学生彭赛列对射影几何的贡献也非常大。

在射影几何学中,因为引入了无穷的概念,直线被看作是半径无穷大的圆,而圆的切线被看作是割线的极限。平面几何中认为平行线永不相交,射影几何则认为平行线相交于无穷远点。基于该观点,就可以用中心投影来取代平行投影了。

如上图所示,实际上平行的铁轨在我们的视线下却是相交的。

而对偶原理是射影几何的基本原理,它将点和直线看作对偶元素,直线上取一点和过一点作一条直线被称之为对偶运算。前面说的是平面,在立体空间中点和平面则是对偶元素。在射影空间中,如果一个命题是正确的,其对偶命题也是正确的。文学中就有对偶的概念 。对偶的概念与对称的概念类似,就是说两个概念之间具有很强的关联性,如电和磁。

数学中经常研究变换下的不变性,比如在拓扑变换中,圆、三角形、正方形都是等价的。这些观点在现实世界中看着确实不合理,但在数学中却很有趣。

数学是最基本的科学工具,热爱科学的朋友,欢迎关注我。