许多新型电子计算机不仅拥有高速的计算功能,而且还能模拟人脑的某种思维活动,就是说,拥有某些智能化的功能。然后,如果严格来鉴定一下,它们离真正的人脑思维功能实在差得太远了,而且有许多本质的差异。主要表现在人脑拥有高度的自我学习和联想、创造的能力,以及更高级的寻找最优方案和各种理性的、情感的功能。
神经网络计算机就是通过人工神经网络,模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的计算机。它可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。
生物的神经网络是通过树突和轴突连接起来的神经元的网络。神经信号在神经元之间传递,帮助人产生思考和记忆。人工神经网络是一种模仿生物神经网络而建立的运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出依照网络的连接方式、权重值和激励函数的不同而不同。而网络自身通常都是对自然界的某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
生物神经网络(左)、人工神经网络(右)
与生物神经网络相似,人工神经网络也可以通过训练提高自身判断和处理的性能。其原理是向该神经网络输入足够多的样本,通过一定的算法来调整网络的结构,即权重值,使得网络的输出与预期值相符。经过训练的神经网络可以像人脑那样进行判断和预测,并且能同时接受几种信号并进行处理。
譬如,它能去辨别一个签名的真伪。它不是凭签名的图像是否相像来判断,而是根据本人在签名时,笔尖上的压力随时间的变化以及移动的速度来判断。目前,神经网络计算机的主要用途是识别各种极其细微的变化和趋势,并发出信号。它已经被用来控制热核聚变反应、监督机器的运行、挑选苹果,甚至预测股市行情。