大家口中的电推一般指的就是离子电推进发动机,我们在很多科幻片中都见到过它的身影,比如《普罗米修斯》中的普罗米修斯号飞船就装载了四台炫酷无比的离子发动机,登陆异形星球的场景实在震撼。不过请不要以为离子发动机只是停留在科幻片中,早在1959年美国物理学家哈罗德·R·考夫曼就制造出了第一台离子发动机,当时用的推进剂是汞。
想必各位心中肯定有一个疑问,既然先进的离子发动机在1959年就被制造出来了,为什么到现在我们还在地球上徘徊,科幻片中不是说这种发动机能上天入地么?不妨来了解下离子发动机的前世今生。
离子电推进发动机的原理是什么?
最早的离子发动机的原理很简单,将推进剂电离,然后将其中的电子和离子分离,然后将质量比较高的离子通过电场加速向后方高速排出,即可获得推进动力。如果要调节发动机推力,那么只要调整电场的强度即可。当然您肯定发现了刚分离的电子去哪里了?带正电荷的粒子排出后发动机会积累负电荷,因此最后必须用电子枪将电子注入羽流中,让它们在宇宙中继续团圆成完整的原子。
离子发动机浑身都是优点,简单总结下主要有如下几个:
经济性非常好
结构简单、推力调节方便
比冲是化学火箭发动机的十倍以上
这里必须要解释一个比冲的概念:比冲的定义是火箭单位质量推进剂产生的冲量,简单的说就是发动机的的效率,越高表示效率越好,单位质量的燃料能将火箭加速到更快的速度。比如早期用于通讯卫星的寿命期内轨道维持燃料一般高达数吨,改用电推发动机后只要数百千克即可。
看上去很美的离子发动机却有一个致命的弱点,它的推力太小了,甚至只能吹气一张纸,这限制了它的应用,但这个弱点在太空中却不那么显著,所以离子发动机还是如火如荼的发展起来了。
离子发动机主要有哪几种?各有什么优缺点
通过离子发动机的结构我们可以知道这种推进方式有几个关键,分别是:
等离子体的产生方式
离子的加速方式
一般我们以离子的加速方式来区分离子发动机,分别是静电式(离子式)和电磁式(霍尔式),静电式的原理是推进剂电离后,利用栅极提取离子,再利用静电场来加速离子,最终用电子枪中和离子避免电荷在发动机上积累。
电磁型则是利用磁场控制电子的运动,让电子在推进方向上积累,形成一个电位差,然后再用这个制造的电位差来加速离子,获得推进动力。
从两者的结构区别来看静电式的体积会比较大,因为静电式推进器比冲很高,但它的推力并不高,主要是因为静电式推进器的结构制约了它的推力增加,我们知道增加推力有两个方式:
增加离子排气速度
增加离子排气密度
前者静电式已经做到了极致,在几种结构中它的喷口离子速度是比较高的,但它的流量上不去,因为静电式是通过格栅电位差加速的,当网孔和电压确定以后,它的离子排气密度就确定了(存在空间电荷效应,电荷密度不能太高,否则分离的离子和电子会重新捕获成电中性原子),因此要增加流量势必会增加网孔数量,那么它的尺寸就会几何级数增加,相当于流速确定的情况下,要让水多流一点出来,就只能多开几个孔了。
静电式离子推进的结构原理图
电磁式则刚好与静电式相反,比如电磁式中如火如荼发展的霍尔推进发动机中,它的离子排气速度比较低,但它的流量很高,这有点像化学火箭,但它仍然比化学火箭比冲要高得多。另外电磁式推进还有一个好处,它没有加速栅极,不存在栅极寿命的问题,并且在推力上取得了一个平衡(静电式推力实在比较小,但比冲高,适合长时间执行任务的深空探测器),因此未来的载人深空飞船发动机发展中电磁式也许将占主导地位。
电磁式推进:霍尔推进的原理图
最后还得提一下电子场致发射发动机,其实它也是一种离子发动机,它的原理与以上几种都不同,在一个高压电场下,金属铯被激发的不稳定态形成一个泰勒锥,从锥尖射出的离子流在高压电场的加速下达到100千米/秒,从而形成推力,这种发动机成本低,结构简单,体积极小,但它的推力也极小,大约在150微牛以下,不过它的比冲极高可达10000S。
电子场致发射发动机的体积可以做到令人咋舌的程度,跟硬币差不多,它未来的应用是航天器的姿态维持,比如正在建设者中空间引力波天线。
电推发动机的推进剂与电离方式
了解了两种典型的电推进方式后,我们再来了解下推进剂以及离子产生的方式,为什么要先说推进方式后说离子产生方式呢?如果不这样的话倒过介绍来容易搞混概念。
电推发动机的推进剂
早期用的是剧毒物质汞,为什么要用这种剧毒物质呢?因为推进剂的选择有几个要求:
容易电离
储量大,容易获取
密度大(燃料箱不占地方,而且推进效率高,因为排放的离子质量大)
但汞的缺点也是显而易见的,毒性前文已经说明,另一个特性是它尽管很容易电离,但首先要加热蒸发成蒸汽才达到电离条件,对于能耗管理要求极高的空间探测器来说,这可是个耗电大户。一般对于汞的缺点说明到这里也就结束了,但它还有另一个很少提及的问题,离子是带正电荷的,尽管电子束已经中和,但仍然存在汞离子吸附着在探测器表面的问题(电推进器的喷射束宽以及溅射角度很关键),比如探测器的热控材料与太阳能电池表面,严重影响原有设计性能。
从结构上看,这是一种静电式的离子电推发动机,它的离子束溅射角度是比较大的,因此必须要考虑对航天器附带损伤的问题。
氙的核外电子排布
现代电推进发动机一般选择惰性气体氙,它的“惰性”表明它不容易和其他物质产生反应,即使溅射后果影响也会小很多,氙原子比较容易电离。另外氙还有能在常温下达到超临界的特性,此时它的密度可达水的1.2倍,大大减小了存储空间,这对于体积大小极度敏感的探测器来说非常长重要。
除了氙以外还有别的推进剂吗?当然有,只要满足上述要求的都可以,比如固体特氟隆,也许这会让大家大跌眼镜,电推进发动机中还有固体“燃料”发动机的。
在这里要重新提一下汞,尽管汞存在诸多缺点,但它在未来深空载人探测任务上极具优势,因为它的密度极大,而载人飞行的飞船同样质量巨大,需要大量的推进剂消耗,而汞这种成本极低的“燃料”是未来深空载人任务的理想推进剂。
电推进发动机的电离方式
其实在离子发动机中这是第一步,因为离子发动机不能加速中性原子,只能加速电子(负电荷)或者原子核(离子(正电荷)),那么首要的任务就是将推进剂的媒介物质电离,一般的电离方式有:
直流放电
电子轰击
射频放电
回旋共振
电离是在电离室(Discharge Chamber)内完成的,在充满工质的电离室内激发和并完成电离,在通过前文说明的比如离子推进是栅极,电磁推进则是交替磁场与电场等。有一点需要注意的是离子推进器中电离区和加速区是分离的,相对效率很很高,单位质量推进剂利用率很高,缺点则是结构比较复杂。电磁推进的电离区和加速区是一体的,结构简单,尺寸更小,对电源要求也比较低,相对可靠性也更高。
电推进发动机的电源
电推进发动机最关键的几个组成部分,发动机、推进剂与电源,所以电源是电推发动机的关键组成之一,一般现代航天器的电源有如下几种:
太阳能电池
同位素电池
在土星轨道以内,探测器的电源用太阳能电池仍然是可以接受的,尽管太阳能密度降低,但对于探测器并不是特别高的电源需求仍然可以勉强满足,但各位肯定会发现,越是往外的探测器,太阳能天线会越来越大。
木星探测器朱诺,它的标志是均匀分布的三面巨大的太阳能电池,当然各位可能也发现了当年的旅行者根本就没有太阳能电池,因为它用的钚同位素电池,它的目标是太阳系以外,那里的太阳犹如一颗大星星,所以只能使用同位素电池,但对于电推这个耗电大户来说(千瓦级别的电推进发动机也只能达到数十最多上百毫牛),如果要达到载人级别的话怎么也得牛顿级别:
黎明号小行星探测器的太阳能电池功率:
距离1AU:功率10000 瓦
距离3AU:功率1300 瓦
它携带的氙离子电推发动机推力为90毫牛,而在3AU时并不能全功率推进,因此电源将成为制约未来深空任务的重大因素之一,因为同位素电池尽管不受与太阳距离限制,但提供的功率仍然有限,必须要用功率更大的空间堆,比如能提供数十千瓦甚至百千瓦乃至兆瓦级别的空间堆。
空间核反应堆电源技术
空间核反应堆从原理上来看与地面的核裂变电站并没有区别,但热交换系统在空间堆中无法使用外界冷却水,只能通过辐射的形式散热,因此未来的空间堆必定会有一个超大的辐射散热盘,除非它采用热电直接转换的技术,但就当前的热电技术而言,效率还处在比较低的水平。
电推进发动机的应用
电推进发动机最早空间测试是在1964年发射的 SERT 1 (太空电力推进试验),探测器上有两台离子推进发动机,只有一台工作了约31分钟。1970年进行了第二次试验,仍然是汞离子推进发动机,累计工作17900小时中重复启动300次,经受了住了考验。
SERT-1
电推进发动机第一次商业应用是在1997年的“泛美5号”卫星,在航天界引起了不小的轰动。
最著名的一次应用是日本宇航局在2003年发射的“隼鸟号”探测器,装载了四台离子电推发动机,目标是探测25143号小行星(丝川小行星),这是第一次小行星取样返回计划,尽管因为燃料泄漏导致在环太阳轨道上多绕了一圈才回到地球,但成功的从丝川小行星上带回了物质(大约数千粒丝川小行星尘埃)。
同时探测两颗小行星的探测器是2007年9月27日发射的NASA黎明号小行星探测器,也是第一个探测小行星带的探测器,它在灶神星探测14个月后全身而退前往谷神星,靠的就是离子推进发动机的超长加速能力。
黎明号的发动机开机加速轨迹
2009年欧空局的绘制地球重力场和海洋环流的“高斯”卫星,因重力场必须要求低轨,如果没有电推发动机,它不可能在250千米的轨道上工作2年。
不知道各位有没有发现,高斯卫星非常流线型,这是考虑了大气阻力效果的气动外形,可见它的轨道是低到多夸张。
2013年我国第一次在实践九号A卫星上使用了离子推进系统,根据这个名字我们知道是静电推进式离子发动机。
限于篇幅不对各国电推进发动机做一一介绍了,不过就当前而言,电推发动机研制走在前列的是美国、德国、日本、中国、俄罗斯等,是不是少了英国和法国?其实这也正常,五常并不是所有时候都能凑齐的。
未来的大气层内展望
离子发动机从上世纪五十年代开始到现在,从最早的汞离子到现在氙离子霍尔推进,但它们并不能在大气层内应用,假如未来要应用的话必须要实现以空气为介质的离子电推发动机。这才能实现《普罗米修斯》中普罗米修斯号穿越异形星球的大气层,在地面降落的壮观场面。
2018年11月21日的《自然》杂志上发布一则简短的新闻,在大气层中工作的“离子发动机”推进下的模型飞机在飞行了50米的距离,飞行试验总共进行了10次,每次都飞行都非常稳定。
当然明白人都知道这是“离子风”发动机,距离传说中真正的大气层内离子发动机还远着呢。
当然无论是空间电推还是大气层内的离子发动机去得突破性进展,对于人类来说都是福音,前者是人类深空载人探测的敲门砖,而后者则可以将人类从化石燃料时代过渡到电能时代,这很重要,因为电能比化石燃料取得更为容易。
本ID微信同号:星辰大海路上的种花家
公众同步发布,搬运前请考虑再三