粉碎一个原子,比粉碎一个地球更难吗?

这里要强调一点,也就是定义一下:粉碎。事先说明,并不是什么科学定义,这是为了后面的行文方便。因为地球本身也是原子构成的,因此这里的粉碎地球是指宏观上让地球破碎成碎渣,不能够形成地球。而这里的粉碎原子,其实是指让原子无法保证自身的原子结构。

那这两者到底哪个更难呢?

其实,我们从能量的角度出发的话,肯定是粉碎地球所需要的能量要大得多。

人类现在已经有办法粉碎一个原子,用的办法就是大型的粒子对撞机。科学家通过这种办法了解到了原子、原子核内的情况,找到了许多粒子。

但这个过程中耗费的能量确实很多,欧洲的大型粒子对撞机LHC位于日内瓦附近,瑞士和法国交界的侏罗山地下100米深处。它每次一起动,附近居民家里灯会变暗不少,还遭到了许多居民的投诉。所以,它是不折不扣的耗电大户,功率能够达到200兆瓦。

但是这点能量对于地球并不会有任何影响。按照目前主流的大碰撞假说,地球在45亿年前,质量还只有现在的9/10,后来一颗火星大小的行星在地球轨道附近,两者来一场对对撞。这个行星一部分的跌落到了地球内部,剩余的一部分碎渣抛洒到了太空当中,在引力作用下形成了如今的月球。

这次撞击的能量远远高于撞碎原子所需要的能量的数个数量级。即使是6500年前的小行星撞击,这颗小行星的直径大概10公里左右。曾经有科学家对这颗小行星撞击进行研究,并通过计算机进行模拟,这颗小行星撞击释放出来的能量大概是10亿颗原子弹爆炸所释放出来的能量。

但无论是忒亚还是6500年前的小行星,都没有能够把地球撞碎。那背后到底是什么在起作用呢?

结合能

我们要清楚的是,任何物质都是依靠作用结合到一起的,地球是引力的作用下结合到一起的,而原子呢? 原子是通过核力把质子和中子束缚在原子核内,而原子核和电子之间则是电磁相互作用。因此,无论是地球还是原子,想要打破都要通过通过足够多的能量来实现。

在原子中,电子和原子核之间的结合是比较容易被打破的,比较牢固的是原子核,其中铁原子核是稳定的,也是平均结合能量最大的。铁原子的平均结合能是8.55315MeV,换算一下也就是1.3*10^(-12)J。

至于地球的引力结合能,我们也有一个专门的公式:

这里假设了地球是一个均质天体,计算可以得到地球的引力结合能2.24×10^32J。也就是说,地球的引力结合能是铁原子的结合能1.7*10^(48)倍,这就意味着,要把粉碎地球所需要的能量都够粉碎铁原子1.7*10^(48)个的。

中子星

相比碾碎原子,其实有一件事做起来远比粉碎地球要难得多。那就是把电子压入到原子核内,让质子和电子反应生成中子。这是由于电子属于费米子,费米子需要遵循泡利不相容原理。说白了,就是电子在原子核外应该占据各自不同的能级状态,大家都不能重样,可以理解成每个电子都有自己的坑,不能乱来。当外界压力挤压电子时,电子为了排好这个座次,就会产生一种量子效应:电子简并态。这个简并态就会产生向外的压力来抵抗外界的压力。

而在一些大质量恒星(质量大于10倍太阳质量的恒星)在演化过程中,到了晚年,内核还剩下太阳质量的1.44倍~3倍左右,引力就可以大到电子简并力都无法抵抗,然后就会产生中子星。

所以,相比粉碎单个原子,把一坨原子的电子都挤到原子核内,最终让中子排排列要简单得多得多。产生中子星所需要的能量条件要远比粉碎地球大出好几个数量级。

最后,我们来总结一下,粉碎地球的难度要远比原子难度要大得多,即使是粉碎最稳定的铁原子所需要的能量也要比粉碎地球相差1.7*10^(48)倍。