休斯顿大学研究人员报道了一种提高超导材料转变(过渡)温度的新方法,提高了超导体工作的温度。发表在《美国国家科学院院刊》(Proceedings of The National Academy of Sciences)上的研究结果表明,这是一种以前从未探索过的实现高温超导性的途径,它为能源生产商和消费者提供了许多潜在的好处。电流可以毫无阻力地通过超导材料,而传统的传输材料在发电源和最终用户之间损失多达10%的能量。找到在室温或室温附近工作的超导体(电流超导体需要使用冷却剂)可以让公用事业公司在不增加所需燃料数量、减少碳足迹、提高电网可靠性和效率的情况下提供更多电力。
博科园-科学科普:对于使用新方法测试的材料,尽管过渡温度保持在室温以下,但却呈指数增长。德克萨斯大学超导中心首席科学家、这篇论文的通讯作者Paul C.W. Chu说:这种方法为寻找高温下的超导体提供了一种全新方法。Paul C.W. Chu是一名物理学家,同时也是奥尔坦普尔大学的科学系主任。目前由他的团队在1994年创造稳定高温超导体的记录是164开尔文(-109.15℃),大约是零下164华氏度(-108.8888889℃)。超导体是以汞为基础的,为这项新研究工作测试的铋材料毒性较低,而且在首次预测温度降至70开尔文之后,其过渡温度出人意料地达到了90开尔文以上,约为零下297华氏度。这项研究的目的是建立一个公认的原理,即通过了解温度和掺杂之间的关系,可以预测超导体的转变温度。
研究人员梁子邓(左)和德州超导中心(UH)的创始主任保罗·朱(Paul Chu)研究了一种用于测量超导性的微型钻石砧细胞(mini-DAC)。图片:Audrius Brazdeikis
掺杂是一种通过引入少量能改变其电学性质元素来改变材料的方法,也可以预测温度和物理压力之间的关系。该原理认为,即使掺杂或压力持续增加,过渡温度也会上升到一定程度,然后开始下降。TcSUH研究员梁子邓(音译)与Paul C.W. Chu合作,是这篇论文的第一作者,他提出了在先前探索的水平上增加压力的想法,以观察超导跃迁温度下降后是否会再次升高。成功了,这确实展示了一种提高超导跃迁温度的新方法,较高的压力改变了被测化合物的费米表面,研究人员认为压力改变了材料的电子结构。测试的超导体样品宽度不到0.1毫米;研究人员表示从磁化测量中检测如此小样本的超导信号是一项挑战,磁化测量是超导性最权威的测试。
在过去的几年里,实验室的同事们开发了一种超灵敏磁化测量技术,使他们能够从压力超过500兆帕的超导样品中检测到一个极小的磁化信号。在这些试验中,研究人员没有观察到饱和点,也就是说,随着压力的增加,转变温度将继续升高。研究人员测试了已知具有超导特性的不同铋化合物,发现新方法大大提高了每种化合物的转变温度。研究人员表示,目前还不清楚这项技术是否适用于所有的超导体,但它适用于三种不同的配方,这一事实带来了希望。但是,通过高压提高超导性在实际应用中并不实际。下一步将是找到一种方法,在没有压力的情况下,通过化学掺杂达到同样的效果。
博科园-科学科普|研究/来自:休斯顿大学
Jeannie Kever,University of Houston
参考期刊文献:《美国国家科学院院刊》
DOI: 10.1073/pnas.1819512116
博科园-传递宇宙科学之美