为什么手机APP能像知己一样懂你?

随着互联网的飞速发展,越来越多的手机APP正在丰富着人们的生活。很多人留意到了一个神奇的现象,即购物APP总能推荐自己想要的商品,新闻APP也能精准地把握自己所关注的新闻内容,许多手机APP俨然已经成为了知己般的存在。那么,这到底是怎么实现的呢?

其实,精准把握用户的喜好并推荐用户感兴趣的信息和商品,是推荐系统的功劳。推荐系统属于一种过滤资讯的应用,主要是使用用户的历史行为数据(即用户的过去偏好或相似用户的过去偏好)来预测该用户未来的喜好。其中,常用的推荐系统算法有基于内容的推荐算法和协同过滤推荐算法等。

基于内容的推荐算法是直接根据产品的内容信息作出相关推荐,为用户推荐与历史感兴趣商品相似的新商品,不需要用户对物品进行评价打分。但是这种算法下推荐的商品的信息有限,方式较片面,难以为用户推荐新的喜好。

协同过滤推荐算法的主要方法是,如果要为用户推荐感兴趣的商品,首先需要找到与该用户有相似兴趣的其他用户,再将其他用户感兴趣的内容推荐给该目标用户。具体来说,协同过滤分为基于用户的协同过滤和基于项目的协同过滤,协同过滤算法会建立用户-项目矩阵,需要收集用户对项目的评价打分,来预测目标用户对一个新项目是否感兴趣。例如,我们经常看到电商平台收集评价打分(满分为5分)。对于目标用户A,与他有相似兴趣的用户B对商品1的评价打分是4分,对商品2的评价打分也是4分。而目标用户A对商品1的打分是5分,那么我们就可以为目标用户A推荐商品2。

除了APP,现实生活中也不乏通过推荐系统算法优化销售的例子。在美国的沃尔玛超市,有研究人员通过对购物数据进行分析,意外发现跟尿布一起购买的最多的商品是啤酒。背后原因是,美国的家庭中,母亲在家里照顾婴儿,父亲去超市购买尿布,而父亲会顺便为自己购买啤酒。因此,沃尔玛将尿布和啤酒放在一起出售,极大提升了销售收入。