黎曼在《论小于给定数值的素数个数》的论文中,给出的是素数计数函数π(x),可以进一步利用π(x)推导出素数公式,但是求解π(x)依赖于黎曼函数的非平凡零点。
在1859年,黎曼向柏林科学院提交了一份标题为《论小于给定数值的素数个数》的论文,该论文仅仅只有八页,却让接下来的数学家忙碌了一百多年。
黎曼在论文中引用了6个假设,6个假设在黎曼的言语中,用了类似“显而易见”等词汇提出来,或者直接拿来用不给任何提示。
后来经过几十年的时间,其中五个“假设”被其他数学家证明为定理,只有最后一个“黎曼猜想”还未得到证明,而这个猜想,正关乎着素数的分布规律。
黎曼的论文中,以黎曼猜想为前提,黎曼得到了一个素数计数函数π(x):
π(x)表示“小于x的素数个数”;
试想,如果整数x为素数,那么π(x+1)-π(x)的值就是“1”,如果x不是素数,那么差值就是0;于是素数计数函数π(x),几乎就相当于素数分布函数了。
在黎曼的论文中,他还构造了一个辅助函数J(x),函数J(x)是求解函数π(x)的关键,而函数J(x)当中,黎曼函数的所有非平凡零点“ρ”,才是整个函数的核心部分。
根据黎曼的论文,函数π(x)和函数J(x)成立的前提,就是“黎曼函数的所有非平凡零点,均在直线x=1/2”,如果黎曼猜想不成立,那么以上素数计数函数π(x)也将不成立。
所以,黎曼猜想关系着素数的分布情况,素数分布到底有没有规律可循,也是黎曼函数的非平凡零点决定的。
我的内容就到这里,喜欢我们文章的读者朋友,记得点击关注我们——艾伯史密斯!